R Programming Basics :
Topics :

Basic Functions : Code #1

Plots : Code #2

Data Manipulation : Code #3 (mutation, summarize, group_by, filter,
ungroup)

Values Imputation : Code #4

Mock Questions : Code #5

GGPlot Dummy Code : Code #56

#1 Some Basics Functions :

Function Description

abs (x) Absolute value

sqrt (x) Square root

log(x) Natural logarithm (base €)

logl0(x) Logarithm with base 10

exp (x) Exponential funciton e*

cos(x), sin(x), ... Trigonometric functions

ceiling(x) Round up: ceiling(6.475) is 7

floor(x) ound down: floor(6.489) is 6

trunc(x) Cut decimals: trunc(2.99) is 2

round(x, digits=n) Regular rounding: round(7.657, 2)
yields 7.67

Statistical Functions :

Function

Description

mean(x, na.rm=FALSE)
sd (x)

sd (x)

mad (x)

median (x)
quantile(x, probs)

Arithmetic mean of object x

Standard deviation of object x

Variance of object x

Median absolute deviation of values in x
Median value of object x

Quantiles where x is the numeric vector
whose quantiles are desired and probs is a
numeric vector with probabilities in [0, 1]

range (x) Range

sum(x) Sum

min(x) Minimum

max(x) Maximum

Function Description

sort(x) Sort elements

order (x) Indices of elements in sorted order

unique (x) Vector of unique elements (removes duplicates)

duplicated(x) Which elements of x are duplicates?

which.min(x)
which.max (x)

Index of smallest element
Index of largest element

which(x) Indices of elements in x which are TRUE

Dataframes

Data frames are lists where every components has the same length:

> x = data.frame(

+ id = 1:4,

+ name = c("Max", "Sophie", "Jack", "Ted"),
+ grade = c(5.0, 5.0, 4.0, 5.0))

> x

> sprintf("x = i, y = %", x, y) #
[1] "x = 10, y = 19.453633"

#2 Plots Basics :

Bar Plot :

> tab = table(mtcars$cyl)
> barplot(tab, cex.axis = 0.7, main = "Distribution of the nr. of cylinders")

Scatter Plot :
plot(feature_1, feature_2, xlab = "Sepal length", ylab = "Petal length")

Scatter plot and adding different colours to different species [types

> cols = c("#8DB3D9", "#8D8DD9", "#B38DD9") # colors in RGB format

> plot(iris$Sepal.Length, iris$Petal.Length,

+ xlab = "Sepal length", ylab = "Petal length",

+ col = cols[iris$Species], pch = 14) # color by species (factor)

> grid(nx = 10, ny = 10, col = "lightgray", 1ty = "dotted", equilogs = TRUE)
> legend(7, 2.5, legend = c("setosa","versicolor","virginica"),
+ col = cols, pch = 14)

-
© -
w -
5
2 < -
3
&
o -
o A : o selosa
 ongd 8 O o versicolof
,ngsadi§§4';~ B o virginica
- do

r T T T T T T 1
45 50 55 60 65 70 75 80

Saving Plots : Panda ULEOR-03 handout : Page 66/110

#3 Data Manipulation : Tidyverse
Data Mutation, adds a new column with the provided condition.

mutate(diamonds, ratio = (price*carat)/depth, excellent = (cut >= "Premium") &
(color =="E"))

This will add new columns in the database.

Summarize() : summarize the whole column into a single value.

summarize(diamonds, avg_price = mean(price))
Or,

"

df_summary <- df %%
group_by(y) %%
summarize(mean_x = mean(x), .groups

group_by() :

#i# filter() : Filter out rows with some specific values

Temp = filter(diamonds, clarity %in% c("11", "SI2", "IF"))

library(dplyr)
ds <~ diamonds %% filter(color %in% c(-

This does the same thing as:

r

ds = subset(diamonds, color %in% c(

arrange() : helps to sort the data.

Example usage :

arrange(cut , desc(price_mean)) , this will sort the data frame so that it is first
ordered in ascending order by the column cut,

Then within each cur group, it the orders the rows in descending order by
price_mean.

unite() and seprate():

x = diamonds %>% unite(index, cut, color, sep = "-") , will unite cut and colour
into same column index with - in between

X %>% separate(index, into = c("cut", "color"), sep = "-") , separates index to
cut and colour from -

Sorting Data :

df_sorted <- df %>% arrange(desc(x))

#4 Imputation Techniques

Imputation Techniques

Mean Imputation: Replace NA with the mean (ignoring NAs).

@ Copy

df_imputed <- df %% mutate(x = ifelse(is.na(x), mean(x, na.rm = Y, x))

MEAN IMPUTATION :

& Copy

library(dplyr)

Suppose df is your data frame and ‘'var' is the variable with missing values.
df_imputed <- df %%

mutate(var = ifelse(is.na{var), mean(var, na.rm =), var))

REGRESSION IMPUTATION

Suppose df is your data frame, and you want to impute missing values in
Fit a linear model on complete cases.
model <~ lm(y ~ x, data = df, na.action = na.exclude)

Predict missing values for 'y’

missing_idx <~ which(is.na(df$y))
df$y[missing_idx] <- predict(model, newdata = df[missing_idx, 1)

#5 Mock Questions

Mock Question

The mpg dataset contains fuel economy data for 234 cars. Using tidyverse tools, perform the

following steps:
. Subset the data so it only includes cars made in 2008 or later (i.e., year >= 2008).
. Group the resulting data by manufacturer and drive type (drv).

. Summarize by computing two values per group: the average highway mpg (mean_hwy) and the
maximum city mpg (max_cty).

. Arrange the summarized table in descending order of the average highway mpg.

. Create a bar plot (using ggplot2) that shows the average highway mpg on the y-axis,
manufacturer on the x-axis, and uses fill color to distinguish the drive type (drv). Add a suitable
title.

1) Load Packages and Data
library(dplyr) # For data manipulation
library(ggplot2) # For the mpg dataset and for plotting

The 'mpg' dataset comes automatically with ggplot2
data(mpg)

2) Subset the data to include only rows where year >= 2008
mpg_filtered <- mpg %>%
filter(year >= 2008)

3) Group by manufacturer and drv (drive type), then summarize
mpg_summary <- mpg_filtered %>%
group_by(manufacturer, drv) %>%
summarize(
mean_hwy = mean(hwy), # average highway mpg
max_cty = max(cty), # maximum city mpg
.groups = "drop" # ungroup after summarizing

)

4) Arrange the summarized table in descending order of mean_hwy
mpg_arranged <- mpg_summary %>%
arrange(desc(mean_hwy))

Print to check the table
print(mpg_arranged)

5) Create a bar plot of mean_hwy vs. manufacturer, colored by drive type

ggplot(mpg_arranged, aes(x = manufacturer, y = mean_hwy, fill = drv)) +
geom_col(position = "dodge") + # bar plot with side-by-side bars
labs(

title = "Average Highway MPG by Manufacturer and Drive Type (Year >=

2008)",
x = "Manufacturer",
y = "Mean Highway MPG"
) +

theme_minimal() +
coord_flip() # optional: flip coordinates for readability

Mock Question

The msleep dataset contains information on the sleep habits of different mammals, including their
taxonomic order, sleep duration, and various physiological attributes. Using tidyverse tools, do the

following:
. Filter the data to keep only mammals whose body weight (bodywt) is less than 50 kg.
. Group the resulting data by taxonomic order (order).
. Summarize each group by computing:
e The average total sleep time (mean_sleep = mean(sleep_total))
¢ The maximum REM sleep time (max_rem = max(sleep_rem))
. Arrange the summary in ascending order of the average total sleep (mean_sleep).

. Create a scatter plot of mean_sleep (x-axis)vs. max_rem (y-axis), labeling points by their
taxonomic order. Add an appropriate title.

1) Load Packages and Data
library(dplyr) # For data manipulation
library(ggplot2) # msleep dataset is included with ggplot2

data(msleep) # load the msleep dataset

2) Filter the data: keep only rows where bodywt < 50
msleep_filtered <- msleep %>%
filter(bodywt < 50)

3) Group by 'order' and summarize
msleep_summary <- msleep_filtered %>%
group_by(order) %>%
summarize(
mean_sleep = mean(sleep_total, na.rm = TRUE), # average total sleep
max_rem = max(sleep_rem, na.rm = TRUE), # maximum REM sleep
.groups = "drop" # ungroup after summarizing

)

4) Arrange in ascending order of mean_sleep

msleep_arranged <- msleep_summary %>%
arrange(mean_sleep)

Print to check the table
print(msleep_arranged)

5) Create a scatter plot of mean_sleep vs max_rem, labeling by order
ggplot(msleep_arranged, aes(x = mean_sleep, y = max_rem, label = order)) +
geom_point(color = "blue", size = 3) +
geom_text(vjust = -1, size = 3) + # add text labels above points
labs(
title = "Mean Total Sleep vs. Max REM Sleep (Bodywt < 50)",
x = "Mean Total Sleep (hrs)",
y = "Max REM Sleep (hrs)"
) +
theme_minimal()

Question:
You are given the mpg dataset. Perform the following tasks using tidyverse:

. Filter the dataset to include only vehicles with engine displacement (displ) less than 4.
. Create a new variable efficiency defined as the ratio of city mileage (cty) to highway mileag
(hwy).
. Group the data by manufacturer and compute:
e The average efficiency (nameit avg_efficiency)
e The total number of observations (n_obs)

. Arrange the results in descending order of avg_efficiency .

. Create a bar plot of avg_efficiency by manufacturer (bars colored by manufacturer).

library(dplyr)
library(ggplot2)

Step 1: Filter the data
mpg_filtered <- mpg %% filter(displ < 4)

Step 2: Create the new variable
mpg_filtered <- mpg_filtered %% mutate(efficiency = cty / hwy)

Step 3: Group and summarize
mpg_summary <- mpg_filtered %>%
group_by(manufacturer) %%
summarize(
avg_efficiency = mean{efficiency, na.rm =),
n_obs = n(),
.groups =

Step 4: Arrange in descending order of avg_efficiency
mpg_summary <— mpg_summary %% arrange(desc(avg_efficiency))
print(mpg_summary)

Step 5: Create a bar plot

ggplot(mpg_summary, aes(x = reorder(manufacturer, -avg_efficiency), y = avg_efficieng

geom_col() +
labs(title =

theme_minimal()

& Copy

Mock Question 2

Question:

Using the airquality dataset, perform the following:
1. Remove all rows with missing values.

2. Create a new variable Temp_C that converts the Temp variable from Fahrenheit to Celsius using

the formula:
Temp_C = (Temp — 32) x 3.

. Group the data by Month and calculate:

* The average Ozone level (avg_Ozone)
e The average Temp_C (avg_Temp_C)
. Identify outliers in the 0zone variable using the 1.5 * IQR rule and remove them from the dataset.

. Create a line plot showing the trend of average Ozone levels by Month after outlier removal.

library(dplyr)
library(ggplot2)

Step 1: Remove rows with missing values
airq_clean <- airquality %% filter(complete.cases(.))

Step 2: Convert temperature to Celsius
airg_clean <- airg_clean %%
mutate(Temp_C = (Temp - 32) * 5/9)

Step 3: Group by Month and summarize
airq_summary <- airg_clean %%
group_by(Month) %%
summarize(
avg_0zone = mean(0zone),
avg_Temp_C = mean(Temp_C),
.groups =

Step 4: Remove outliers from Ozone using the 1.5%IQR rule
iqr_ozone <- IQR(airqg_clean$0zone)

gl <- quantile(airqg_clean$0zone,

q3 <- quantile(airq_clean$0zone,

lower_bound <- ql - * iqr_ozone

upper_bound <- g3 + * iqr_ozone

airq_no_out <- airq_clean %>% filter(0Ozone >= lower_bound, 0zone <= upper_bound)

Recalculate monthly average 0Ozone after outlier removal
airg_summary_no_out <- airqg_no_out %%
group_by(Month) %%
summarize(
avg_0zone = mean(0zone),
.groups =

Step 5: Create a line plot of average 0Ozone levels across months
ggplot(airq_summary_no_out, aes(x = Month, y = avg_Ozone)) +
geom_line(color =) +
geom_point(color = , Size = 3) +
labs(title =
= " y =
theme_minimal()

Mock Question 1: Tidyverse Data Manipulation with mpg Dataset

Question:

Using the mpg dataset, perform the following tasks:
1. Filter the data to include only vehicles with highway mileage (hwy) greater than 25.

2. Create a new variable efficiency_ratio defined as the ratio of city mileage (cty) to highway

mileage (hwy).
. Group the data by manufacturer and calculate:
e The average efficiency_ratio (nameit avg_efficiency)
» The total count of vehicles (vehicle_count)
. Sort the results in descending order of avg_efficiency .

. Create a bar plot showing avg_efficiency for each manufacturer.

library(dplyr)

@ Copy
library(ggplot2)

1. Filter dataset: vehicles with hwy > 25

mpg_filtered <- mpg %% filter(hwy >

2. Create new variable: efficiency_ratio

mpg_filtered <- mpg_filtered %% mutate(efficiency_ratio = cty / hwy)

3. Group by manufacturer and summarize
mpg_summary <- mpg_filtered %>%
group_by(manufacturer) %%
summarize(
avg_efficiency = mean(efficiency_ratio, na.rm = N
vehicle_count = n(),
.groups =

4. Sort the summary table in descending order of avg_efficiency
mpg_summary <- mpg_summary %% arrange(desc(avg_efficiency))
print(mpg_summary)

5. Create a bar plot of avg_efficiency by manufacturer

ggplot(mpg_summary, aes(x = reorder(manufacturer, -avg_efficiency), y = avg_efficienc
geom_col() +
labs(

) +

theme_minimal()

Question:

Using the airquality dataset, complete the following tasks:
1. Remove rows with any missing values.

2. Create a new variable Temp_C that converts the temperature (Temp) from Fahrenheit to Celsius

using the formula Temp_C = (Temp — 32) x 2.

. Group the cleaned data by Month and compute the average 0zone level (name it avg_0zone)

and average Temp_C (name it avg_Temp_C).
. Identify and remove outliers from the 0zone variable using the 1.5 * IQR rule.

. Plot a line chart showing the trend of the average 0zone levels across months after outlier

removal.

library(dplyr)
library(ggplot2)

. Remove rows with missing values

airq_clean <- airquality %>% filter(complete.cases(.))

. Convert temperature to Celsius
airq _clean <- airq_clean %>%
mutate(Temp_C = (Temp - 52) * 5/9)

3. Group by Month and summarize average Ozone and Temp_C
airq_summary <- airq_clean %%
group_by(Month) %>%
summarize(
avg_0Ozone = mean(Ozone, na.rm =
avg_Temp_C = mean(Temp_C, na.rm
.groups =

. Outlier removal for Ozone using 1.5%IQR rule
ozone_iqr <- IQR(airg_clean$0zone)
ozone_ql <- gquantile(airq_clean$0zone,
ozone_g3 <- quantile(airg_clean$0zone,
lower_bound <- ozone_ql - * ozone_iqr
upper_bound <- ozone_q3 + * ozone_iqr

airg_no_out <- airq_clean %% filter(0Ozone >= lower_bound, Ozone <= upper_bound)

Recalculate monthly average Ozone after outlier removal
airq_summary_no_out <- airq_no_out %>%
group_by(Month) %>%
summarize(
avg_Ozone = mean(Ozone, na.rm =
.groups =

Plot the trend of average Ozone levels by Month after outlier removal

ggplot(airg_summary_no_out, aes(x = Month, y = avg_Ozone)) +

geom_line(color = e, size) +
geom_point(color = 1", size) +
labs (

) +
theme_minimal()

#6 ggplot()

Gg plot scatter plot :

Load ggplot2 package
library(ggplot2)

Use a built-in dataset (mtcars) for demonstration

data(mtcars)

Create a scatter plot: weight vs. miles per gallon

ggplot(mtcars, aes(x = wt, y = mpg)) +

geom_point(size = 3, color =) + # Scatter points
labs(

) +

theme_minimal() # Minimal theme for a clean look

code for copying

ggplot(mtcars, aes(x = wt, y = mpg)) +
geom_point(size = 3, color = "blue") + # Scatter points
labs(
title = "Scatter Plot of MPG vs. Weight",
x = "Weight (1000 Ibs)",
y = "Miles per Gallon"
) +
theme_minimal()

BAR PLOT :

2. Bar Plot (mtcars: count by number of cylinders)

library(ggplot2)

data(mtcars)

ggplot(mtcars, aes(x = factor(cyl))) +
geom_bar(fill =) +
labs(

) +

theme_minimal()

Line Plot :

3. Line Plot (airquality: Average Ozone by Month)
O Copy

library(ggplot2)
library(dplyr)
data(airquality)

Summarize mean Ozone per Month
aq_summary <- airquality %%
group_by(Month) %%

summarize(mean_0zone = mean(0zone, na.rm), .groups =

ggplot(aq_summary, aes(x = Month, y = mean_0zone)) +
geom_line(color = , Size = 1) +
geom_point(color = , size = 2) +
labs(

title =

) +

theme_minimal()

HISTOGRAM :

4. Histogram (mtcars: Distribution of MPG)

library(ggplot2)
data(mtcars)
ggplot(mtcars, aes(x = mpg)) +
geom_histogram(binwidth = 2, fill = , color =
labs(
title =
X =
y:
) +
theme_minimal()

BOXPLOT :

Boxplot (mtcars: MPG by Cylinder)

library(ggplot2)
data(mtcars)
ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +

geom_boxplot(fill = e") +
labs(

title =

X =

y =
) +

theme_minimal()

@ Copy

